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Abstract-The P ,-approximation method, along with the &Eddington phase function approximation, was 
used to study radiative heat transfer in absorbing-emitting-scattering media. It is established that the 
asymmetry factor of the scattering phase function (g) plays an important role in radiative transfer. The 
concepts of the effective scattering coefficient and effective optical dimension are suggested to be used in 
the study of radiative heat transfer. In highly forward scattering media (g > 0.8), the effect of scattering 
on radiative heat transfer can be neglected. In a two-dimensional square enclosure, the results of radiative 
heat flux obtained by the P ,-approximation, using an improved boundary condition, are in good agreement 
with the numerically exact results of Kim and Lee (Effect of anisotropic scattering on radiative heat transfer 

in two-dimensional rectangular enclosures, Znt. J. Heat Mass Transfer 31, 171 l-1721 (1988)). 

1. INTRODUCTION 

INCREASING research efforts have been paid to treating 

anisotropic scattering because of the importance of 
this effect in atmospheric radiation transfer, pul- 
verised coal-fired combustion systems, and many 
other areas. However, radiative transfer in an absorb- 

ing, emitting, and scattering medium is governed by a 
complex integro-differential equation which is difficult 
and computationally expensive to solve in multi- 
dimensional geometries. 

Recently, the radiative transfer equation in multi- 
dimensional absorbing, emitting and scattering media 

has been solved numerically by various approximate 
schemes. Menguc and Viskanta used the P,- and the 
P,-approximations along with the &Eddington phase 
function approximation to study the effect of aniso- 
tropic scattering on radiative heat transfer [l, 21. In 
their version of the P,- and the P,-approximations, 

the values of the two phase function parameters of 
the 8-Eddington approximation are required to per- 
form the calculation. Their numerical results show a 
dramatic effect of the scattering phase function and 

single scattering albedo on radiative heat flux. Later 
work of Truelove [3] employing the S,-approximation 
of the discrete ordinates method indicated that the 
numerical results of Menguc and Viskanta are unre- 
liable. More recently, Kim and Lee incorporated a 
complex Mie scattering phase function into the S , .,- 
approximation to predict radiative heat transfer in a 
two-dimensional rectangular enclosure containing 

grey, absorbing, emitting, and scattering media [4]. 
Their results can be regarded as numerically exact. 

Over the years, attempts have been made to study 

the effect of anisotropic scattering from fly-ash par- 
ticles on radiative heat transfer in pulverised coal-fired 
furnaces. For example, the P,-approximation results 
of Menguc and Viskanta [5] show that anisotropic 

scattering has a significant effect on the radiative heat 
flux distribution at the wall of a large scale pulverised 
coal-fired furnace and conclude that neither the iso- 
tropic nor the non-scattering assumptions can be 
made. Nevertheless, the quantitative effect has not 
been clearly established. It is, therefore, of great value 

to ascertain the magnitude of this effect in order 
to make any realistic modelling assumptions for 
simplifying the calculation of the in-scattering term. 

In the prediction of pulverised coal combustion 

where the radiative transfer equation is solved simul- 
taneously with other transport equations governing 
the conservation of mass, momentum, species and 
energy, economic measures must be taken into 
account even with the loss of some accuracy. A simple, 
accurate, and computationally efficient radiation 

model is highly desirable to be incorporated into a 
general prediction procedure. The P ,-approximation 
offers the advantages of simplicity, high com- 
putational efficiency and capability of treating aniso- 
tropic scattering. Moreover, it has been demonstrated 
that in absorbing-emitting media the accuracy of the 
P ,-approximation can be improved significantly when 
an optimised boundary condition is employed 161. 
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NOMENCLATURE 

9 asymmetry factor of scattering phase Greek symbols 
function 8 emissivity 

I radiation intensity [W m * sr ‘1 0 polar angle [rad] 
10 zeroth moment of radiation intensity & 

[W m ‘1 
absorption coefficient [mm ‘1 

% extinction coefficient, K, + li, [m ‘1 
1, first-order moments of radiation intensity ti:. 

[Wm ‘1 
effective extinction coefficient [rn-- ‘1 

K, scattering coefficient [mm ‘1 

6, second-order moments of radiation li: effective scattering coefficient [m ‘1 
intensity [W mm ‘1 [, q, ,u direction cosines 

1, black-body radiation intensity 70 optical dimension, IC,L 
[W m~‘sr~‘] 4 azimuthal angle [rad] 

6 direction cosines : ( if i = 1; q if i = 2 ; p if @ scattering phase function 
i=3 Y scattering angle [rad] 

L characteristic dimension [m] (0 single scattering albedo, K,/IC, 

Q non-dimensional net radiative heat flux R solid angle [sr]. 
r spatial location vector 
s distance measured along the direction of 

radiation propagation [m] Subscripts 
S volumetric heat generation rate [kW mm ‘1 a anisotropic scattering 
T temperature [K] i isotropic scattering 
X, I’, Z Cartesian coordinates [ml. W wall. 

Therefore, it is desirable to investigate the accuracy 

of the P ,-approximation in scattering media in order 
to extend its capacity of application. 

In this work, the accuracy of the P,-approximation 

in absorbing, emitting and scattering media when 
using an improved boundary condition is studied by 
comparing the results of this work with those of Kim 

and Lee [4]. The &Eddington phase function approxi- 
mation [7,8], which represents a genera1 Mie scat- 
tering phase function in a simple yet accurate fashion, 
is incorporated into the P,-approximation. It is found 
in this work that the effect of scattering can be evalu- 
ated without knowing the &Eddington phase function 

parameters as long as the asymmetry factor of the 
original phase function is available. Effects of the 
phase function and scattering coefficient on radiative 
heat transfer are also studied using the present 
P,-approximation. 

2. FORMULATION 

The radiative transfer equation in an absorbing, 
emitting and scattering grey medium in local thermo- 
dynamic equilibrium can be written as 

In the Cartesian coordinates system, the derivative 
with respect to the distance s is given as 

where <, q and p are direction cosines defined as 

5 = sin 0 cos 4 1; = sin Q sin 4 p = cos 0. (3) 

In the spherical harmonics method, the moments 
of the intensity are used as dependent variables in 
calculating the intensity and radiative heat flux. The 
moments of intensity are defined as the integrals of 
intensity over the entire solid angle after first multi- 
plying by the appropriate direction cosines such that 

Zn l i  

I,(r) = ss I(r, 0,4) sin 6’ dO d4 (4) 
0 0 

I,(r) = l,I(r, 0, c,b) sin 0 dtI d4 (5) 

2n I 

J,(r) = 
ss 

/,I,I(r, fl,d) sin 0 dQ d4 (6) 
0 0 

where I, and 1, are the direction cosines and each of 
them is either 4, 7 or p. 

In the P,-approximation, the radiation intensity is 
expanded in terms of its moments as [I] 

The closure conditions for the P,-approximation are 

4, = :4&,~ (8) 

Before going further to formulate the governing 



equations of P,-approximation, the scattering phase g =f+g’-fs’. (14) 
function must be considered in order to work out the 
expression for the in-scattering term. The exact phase 

The parameter g’ is then given as 

function can be expanded in a series of Legendre s-f 
polynomials such that 9’ = 1-f’ (15) 

Q(Y) = f a,P,(cos Y), (9) 
In fact, the &Eddington phase function parameters f 

,I= 0 and g’ can be related to a, coefficients (a, and u2) 

where a,, is the angular distribution coefficient which 
of equation (10) by replacing (Da(Y) for Q(Y) [l, 81. 
However, it has been observed that the use off and g’ 

can be calculated using the orthogonality property of determined in this way yields negative phase function 
the Legendre polynomials. Multiplying equation (9) values at some scattering angles [8]. It will be shown 
by P,(cos Y) and integrating results in that in the P ,-approximation the determination off 

2nSl 
and g’ is not necessary if the asymmetry factor of the 

lzi =7 ” 
s 

@(Y)P,,(cos Y) dQ. (10) original phase function g is known. 
R=4n The expression for the in-scattering term in equa- 

In the simple P,-approximation, the use of such a 
tion (1) can be obtained by employing the &Edding- 

complicated phase function becomes unnecessary. It 
ton phase function approximation given in equation 

is believed that the simple yet accurate &Eddington 
(11) and written as 

phase function approximation is appropriate for the 1 
P ,-approximation which takes the form Ks&r n’=‘$n s 

@,,(Y)Z(U) da’ = rc,fZ 

CD,(Y) = 2f6(1-cosY)+(1-f)(l+3g’cosY). 
(11) +K,~(l-/)[~~+39’(~,~+li~+z~~)l. (16) 

The parameter g’, which is the asymmetry factor of After performing some standard derivations, see 
the truncated phase function, is determined by Menguc and Vistanka [I], the governing equation of 
assuming that the approximate phase function ma(Y) the P ,-approximation in the Cartesian coordinates 
has the same asymmetry factor g as the exact phase system can be obtained and written as 
function. The asymmetry factor is an important par- 
ameter defined as 

g =4; 
s 

@(Y)cosY dR. (12) 
n 4n 

= 
+; & ;f = K,(1,--4711,). (17) 

i 1 e 
It has been stressed that g is the fundamental phase 
function similarity parameter [9]. The asymmetry If the volumetric heat generation rate S of the medium 

factor represents the amount of radiation scattered in is specified, the governing equation of the P,-approxi- 

the forward direction. For example, g = 1, 0 and - 1 mation then takes the form 

correspond to complete forward scattering, isotropic 
scattering, and complete backward scattering, respec- 
tively. Although the asymmetry factor can be cal- 
culated through the Mie theory [8], the method is (18) 
very complicated and not practical for engineering 
applications. Fortunately, the asymmetry factor g can 

The net radiative heat fluxes, I,, are related to lo 

be determined experimentally. Boothroyd et al. have 
through 

presented some data for the asymmetry factor of fly- 1 az, 

ash [lo]. Both the experimental results of Boothroyd 
Z,=-gx (19) 

e 
et al. [lo] and the calculation of Goodwin and 
Mitchner [I 1] indicate that fly-ash particles have an 
asymmetry factor about 0.8. 

The asymmetry factor of the S-Eddington phase 
function can be obtained by using the definition of 

I az, 
I,=--- 

3~: ay 

i az, 
z,=-gTz 

e 
the asymmetry factor, equation (12), such that 

where the parameter IC’, is given as 

4’, 
s 

= $,(Y)cosYdQ=f+(l-f)g’. (13) K: = K, + (1 -f-g’ +fg’)Ks (22) 
n 4n 

A close look at these equations reveals that what is 
Requiring the asymmetry factor of the S-Eddington needed is a linear combination of f and g’, i.e. 
approximation to be equal to the asymmetry factor g f+g’-fg’, rather than individualforg’. Fortunately, 
of the original phase function results in this linear combination is just equal to the asymmetry 
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factor of the original phase function g as given in 
equation (14). Therefore, it is not necessary to caf- 
culate the individual values of f and g’ when the 
asymmetry factor g is available and this is often the 
case for most scattering problems. Equation (22) can 
be written in terms of Q as 

K; = ti~~c,ifl-ggfri,. (23) 

In this study, the new physical quantity ti: is termed 
the eflhive extinction coejficient and suggested to be 
used in the study of radiative heat transfer. The prime 
used for tig is to distinguish it from the conventional 
e.utincfinn coeficient K, defined as 

rCC = ti,-+K,. (24) 

The effective extinction coefficient is related to the 
extinction coefficient through 

k’:. = (1 -#Q)K,. 

Another quantity ICY is defined as 

(25) 

ti; = f I -g)K, . (26) 

As the effect of scattering depends on both the 
scattering coefhcient and the phase function of the 
medium, we call ICY the effective stuttering coefficient 
as this quantity takes into account both factors. It is 
also suggested in this work that the efective opticul 
d~~e?zs~~~ of a radiation system defined as r&L should 
be introduced in the study of radiative heat transfer. 

In a two-dimensional axisymmetric coordinate 
system, the governing equations of the P,-approxi- 
mation have been obtained by Liu 1121 and are given 
as 

[ = _ _l_ !!!! 
3K:. ?r (27) 

(29) 

In this study, the generalised boundary condition 
of Liu et al. [6] is used to obtain the numerical results 
of the P,-approximation. Under the assumptions that 
all surface walls are grey and diffusively emitting and 
reflecting, the generalised boundary condition con- 
tains an arbitrary constant and takes the form [6,12] 

where /t = (n+ l)/(n+2), n is an arbitrary positive 
integer, and t_ corresponds to the surfaces in the 
negative and positive directions, respectively. The 
physical significance of n and the effect of n on the 
results of the P,-approximation have been discussed 
and studied in ref. [6]. k may be explained as a certain 
modification to the wall emissivity. 

Equation (23) indicates that for complete forward 

scattering where g is equal to unity, the ell’cct of scat- 
tering vanishes. This is true simply because in this cast 
the increase in radiation intensity due to in-scattering 
is completely compensated by its decrease due to 
out-scattering, see equation (I). Grosshandler and 
Monteiro used this result as an approximation to study 
the absorptivity of pulversied coal particles cxper- 
imentally [ 13]. 

It is worth noting that a scaling law can be readily 
derived from the governing equations of the P,- 
approximation. A comprehensive discussion of 
scaling laws which reduce anisotropic scattering prob- 
lems to isotropic scattering ones has been presented by 
McKellar and Box [14]. Equation (23) and equations 
(17)-(2 I ) indicate that the characteristic physical par- 
ameters which determine the solution of the zeroth 
moment and lirst-order moments are 

fc, and (I -g)ti,. 

It should be pointed out that the corresponding 
boundary condition, equation (30), does not con- 
tribute any new parameters to the problem. Therefore, 
it is possible to reduce an anisotropic problem to an 
isotropic problem through the scaling 

K’, Ii = k’,, It, (31) 

[(l -Q)&ll& = [(l -Q)&ll,. (32) 

Bear in mind that for isotropic scatteringy = 0. Equa- 
tion (32) can be written in a clearer form 

h.,/, = (1 -Q)K,l,. (33) 

This scaling, formed by equations (31) and (33). is 
equivalent to that established by Lee and Buckius [I 51 
based on the P ,-approximation for one-dimensional 
problems. In ref. [IS], Lee and Buckius show numeri- 
cally that this scaling yields more accurate results than 
other scaling schemes for one-dimensional radiative 
transfer problems. More recently, the accuracy of this 
scaling has been investigated by Kim and Lee [ 161 
employing the S, ~-approximation for two-dimen- 
sional problems. Their results show that this scaling 
is very accurate for diffuse incidence and isothermal 
emission problems. 

3. RESULTS AND DISCUSSION 

The P,-approximation was applied to predict 
radiative heat transfer in a two-dimensional square en- 
closure since for this problem the S, ,-approximation 
solutions of Kim and’ Lee [4], which can serve as 
numerically exact solutions, have been presented in 
the literature. 

Numerical results of the P,-approximation 
reported in this paper were obtained by using the 
elliptic equation successive-overrelaxation (SOR) 
iterative technique. It is assumed that the convergence 
is achieved when the maximum percentage error of 
the zeroth moment of radiation intensity is less than 
0.001 o/o, All the numerical results of the P ,-approxi- 
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mation were obtained by employing a 20 x 20 uniform 
grid scheme and on the AMDAHL computer at the 

University of Leeds, U.K. In this work, four rep- 

resentative scattering phase functions are considered, 
highly forward scattering phase functions Fl and F2, 
isotropic scattering, and backward scattering function 
B2. The symmetry factors of these phase functions are 
0.85,0.67,0.0 and - 0.4, respectively. Details of phase 
functions Fl, F2, and B2 can be found in ref. [4]. One 
of the advantages of the simple P ,-approximation is its 

computational efficiency. For the physical parameters 

studied in this work, the longest CPU time is 60 s 
which occurs when the square has a very low wall 

emissivity (a, = 0.1) and contains a pure highly for- 
ward scattering medium, Fig. 3. It was found that 

the CPU time per run depends strongly on the wall 

emissivity and the effective optical dimension. The 
higher the wall emissivity and the effective optical 

dimension, the lower the CPU time required. For 
black square enclosures and pure scattering media, a 

20 s CPU time is required for highly forward scat- 
tering problems. For isotropic and backward scat- 

tering media, however, the CPU time is less than 5 s. 

Based on the previous study [6] and some numerical 
sensitivity studies of the effect on n on the P,-approxi- 
mation results for the problems considered, the integer 
n in the boundary condition is assumed to be 10 in 

the present study. 

3.1. Boundary incidence problems 
The first case studied is a boundary incidence prob- 

lem where the bottom wall of the square enclosure 
has a unit emissive power Ebw but all other walls and 

the medium are kept cold. The length of the side wall 
of the enclosure is 1 m. It is believed that the effect of 
anisotropy on radiative heat transfer is most sig- 
nificant in this non-symmetric situation. The pre- 

dictions of the P,-approximation are compared with 
the results of Kim and Lee [4] for different phase 
functions, scattering albedos, wall emissivities, and 

optical dimensions. 
Figure 1 shows the effect of phase function (asym- 

metry factor) on the centreline net radiative heat flux 
in they direction of a black square enclosure for pure 
scattering media. The P,-approximation results are in 

good agreement with the numerically exact solutions 
except for the highly forward scattering case where g 
is equal to 0.85. This is indeed expected because in 
this case the medium is nearly non-scattering (and also 
non-absorbing) and the radiation intensity is highly 
dependent on direction. For isotropic and backward 
scattering, the distribution of radiation intensity is less 

directional dependent and, therefore, the P,-approxi- 
mation is accurate. The P,-approximation under- 
predicts the centreline net radiative heat flux near the 
cold wall. The effect of the asymmetry factor on the 
centreline radiative heat flux is significant for this non- 
symmetric heat input problem. In fact, the change in 
asymmetry factor alters the effective optical dimen- 
sion of the square enclosure. The P,-approximation 

1.0 

0.6 

0.6 

a” 

0.4 

0.2 

0.0 

-c exact solution 

- PI-Approx. 

0:2 014 0:s 016 
Y/L 

FIG. 1. Centreline net radiative heat flux in the y direction : 
~,=1.0,L=1.0m,~,=0.0,~,=1.0m~‘. 

results are not in good agreement with the exact results 
for highly forward scattering because the effective 
optical dimensions are very small. In the extreme situ- 

ation of complete forward scattering, the effective 
optical dimension is zero and the medium transfers 

the most radiative heat. 
In forward scattering media (phase function F2), 

the effect of scattering albedo on the centreline net 

radiative heat flux in the y direction is shown in Fig. 
2. The results obtained by the P,-approximation are 
in good agreement with the S, ,-approximation results 

except in the region near the cold wall where the P,- 

approximation again underpredicts the radiative heat 
fluxes. The results show that the centreline net radi- 

ative heat flux decreases with increasing the scattering 
albedo. This effect of the scattering albedo can be 

0.8 

0.6 

a” 

0.4 

0.2 
- exact solution 

0.0 
- PyApprox. 

I - I - . - . - 
0.2 0.4 0.6 0.8 

Y/L 

FIG. 2. Effect of scattering albedo on the centreline net 
radiative heat flux in the y direction : E, = 1 .O, L = 1 .O m, 

g=0.67(F2),tic= l.Om-‘. 
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explained in terms of the effective optical dimension. 
For forward scattering (g > 0), the increase of the 
scattering albedo causes the decrease of the effective 
optical dimension, see equation (2.5) and, therefore, 
increases the centreline net radiative heat flux. 

Figure 3 shows the centreline net radiative heat 
fluxes in the y direction in a grey square enclosure of 
unity optical dimension containing a pure forward 
scattering medium (phase function F2) for different 
wall emissivities. It can be seen that the effect of wall 
emissivity is sjgni~cant because the radiative heat 
emitted from the hot wall is proportional to the wall 
emissivity. The agreement between the P,-approxi- 
mation results and the exact results is excellent 
especially for small wall emissivities. 

The effect of optical dimension on the centreline net 
heat flux in the JJ direction is studied in a black square 
enclosure containing a pure forward scattering 
medium (phase function F2). The results are com- 
pared with the exact results in Fig. 4. In general, the 
P,-approximation predictions are in better agreement 
with the exact solutions with increasing optical dimen- 
sion. In fact, the increase of optical dimension in this 
pure scattering medium has the same effect as decreas- 
ing the asymmet~ factor, see Fig. I, because they 
both increase the effective optical dimension of the 
enclosure. 

Figure 5 shows the net radiative heat fluxes at the 
hot wall surface for different phase functions. In the 
case of highly forward scattering, the P,-approxi- 
mation yields the worst results in comparison with 
the exact results, about 10% higher than the exact 
solution and unrealistically higher than unity. This 
unphysical behaviour of the P,-approximation has 
been discussed in detail by Ratzel and Howell [17]. 
However, when the asymmetry factors are small 
(,g = 0 and --0.4), the agreement between the P,- 
approximation predictions and the exact results is 

1 .o 

0.8 

0.6 

0” 

0.4 

+ exact solution 

- Pi-Approx. 

0:2 0:4 016 018 
Y/L 

FIG. 3. Effect of wall emissivity on the centreline net radiative 
heat flux in the y direction: o = 1.0, L = 1.0 m, 9 = 0.67 

(FZ), K~ = 1.0 m-‘. 

0.8 

0.6 

0” 

0.4 

4 exact solution 

O-O’ 
YlL’ * 

FIG. 4. Effect of optical dimension on the centreline net 
radiative heat flux in the y direction : E, = 1 .O, L = I .O m, 

,q = 0.67 (F2). w = 1.0. 

very good. This is simply because the radiation inten- 
sity is less directional dependent with a decreasing 
asymmetry factor. The net heat flux on the hot wail 
surface decreases when the asymmetry factor increases. 
This effect is due to the increase of the incident heat 
flux to the hot wall when the backward scattering 
becomes significant. 

The P ~-approximation has also been used to exam- 
ine the relative importance of absorption and scat- 
tering to radiative heat transfer for this boundary 
incidence problem. To this end, the medium is 
assumed to be absorbing and isotropic scattering. The 
results are shown in Figs. 6 and 7. It can be seen that 
for this boundary incidence problem both absorption 
and scattering coefficients have a significant effect on 
the centreline net radiative heat flux in they direction. 

0.8 

0.6 

0” 

0.4 

g=O.85IFI) 

l.Ot 

f 

-c exact solution 

- P,-Approx. 

0.2 0.4 0.6 0.8 
x/ L 

FIG. 5. Effect of anisotropy on the hot surface net radiative 
heatflux:~~=l.O,~=l.Om,~~=I.O,~~=l.Om ‘. 
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FIG. 6, Elect of absorption coefkient on the centre1ine rret FIG. 8. Effect of as~rne~ factor on the centreiine net 
radiative beat Rux in the y direction : E, = 1.~3, L = I .O m, radiative heat &xx in the y direction : c = 1 .O, L = I .O m, 

g = 0.0, K, = 0.5 m- I. K = 1 0 m-‘, rc, = I.0 m-“. a ’ 

It should be noted that the absorption coefficient has 
negligible effect on the radiative heat flux an the hot 
wall surface. Figure 8 shaws the effect of the asym- 
metry factor on the centrehne radiative heat flux when 
the medium is absorbing and scattering. When scat- 
tering is highly forward, the scattering elect can be 
neglected by treating the medium as non-scattering 
without causing great error. The practical conclusion 
drawn from these results is that the effect of scattering 
from fly-ash particles can be neglected with confi- 
dence. Therefore, the problem of predicting radiative 
heat transfer in pulverised coal-fired furnaces can be 
greatly simpered. However, the absorption and emis- 
sion of radiation by fly-ash particles must be taken 
into account. 

0.6 

a” 

0*4 

I . . - . - , ” 
-- I. 
0.2 0.4 0.6 

Y/L 
0.6 

RG. ‘7. Effect of scattering coefficient on the centreline net 
radiative heat flux in the y direction: ~w = 1.0, L = I.0 m+ 

9 = 0.0, KS = OS m- 8. 

0.6 

a” 

0.4 

6.2 0.4 0.6 6.8 
Y/L 

3.2. Isothermal emission problems 
The other case studied in this work is the isothermal 

emission problem where all the boundary walls are 
cold and the medium has a uniform emissive power 
of unity. 

The effects of asymmetry factor, scattering 
coefficient, and absorption coefficient on the surface 
net radiative heat flux have been investigated by the 
P,-approximation. It was found that the asymmetry 
factor and scattering coefficient have a negligible effect 
on the surface heat flux because the anisotropic effects 
cancel out in this symmetric radiating system. The 
same conclusion has been drawn by Kim and Lee [4] 
using the S I ~-approximation. Rowever, the medium 
absorption coe&Icient has a significant effect on the 
surface heat Rux. 

The P,-approximation results of surface heat ffux 
are compared with the exact results in Fig. 9 for 
different scattering albedos. The surface heat flux 
decreases significantly with increasing scattering 
afbedo since an increase of scattering akdo results 
in a decrease of absorption coefficient. The agreement 
between the Pi-appro~mation results and the exact 
solutions is relatively good. The greatest errors occur 
near the corner region where it is believed that the 
radiation intensity exhibits the largest dependence on 
direction, 

The first-order spherical harmonics approximation 
has been employed to solve the radiative transfer 
equation in an absorbing, emitting, and aniso- 
tropically scattering medium. The complex phase 
function was modelled by the SEddington phase 
function approximation, It is established that the 
effect of scattering on radiative heat transfer can be 
predicted as long as the asymmetry factor of the phase 
fun~tio~l is available. It is suggested in this work to 
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1.0 a 

-a- exact solution 
0.8 

- p1-Approx. 

X/L 

FIG. 9. Effect of scattering albedo on the net radiative heat 
flux on the wall surface for isothermally emitting media: 

c,= l&L= I.Om..~=0.67(F2),ri,== l.Om-‘. 

use the concepts of the effective scattering coeEcient 
and effective optical dimension in the study of radi- 
ative heat transfer. 

Comparisons between the P ,-approximation pre- 
dictions of radiative heat flux, using an improved 
boundary condition. with the numerically exact 
results of Kim and Lee [4] in a square enclosure show 
that the agreement is, in general, good. Although the 
Pi-approximation is not accurate in corner regions 
and in pure and highly forward scattering media under 
the thermal conditions considered, it should yield 
more accurate results in practical radiating systems 
since the problems studied in this work are extremely 
idealised. 

This work also reveals the fact that effects of scat- 
tering on radiative transfer can be neglected if the 
medium has a highly forward scattering phase 
function. Based on this fact, the mixture of radiating 
gases and fly-ash particles in a pulverised cod-fired 
furnace can be treated as a non-scattering medium 
with confidence since fly-ash particles scatter radiation 
predommantly in the forward direction. However, the 
absorption and emission of radiation by fly-ash par- 
ticles cannot be neglected. 
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EFFETS DE LA DIFFWSION ANISOTROPE SUR LE TRANSFERT THERMIQUE 
RADIATIF VUS A TRAVERS L’APPROXIMATION P, 

R&m&-La methode d’approximation PI, avec ~approxim~ti~n de fonction de phase 5 ~~dd~ngton, est 
utilis& pour &udier le transfert thermique radiatif darts Ies miiieux absorbants, imetteurs et diffusants. On 
itablit que Le facteur d’asymitrie de la fan&on de phase dif%sante (9) joue un r%e important dans ie 
transfert radiatif. Les concepts de coefficient de diffusion efficace et de dimension optique e&ace scmt 
utiiisies dam l’ttude du transfert radiatif. Dans ks milieux fortement diffusants vers I’avant (g > 0,8), 
l’effet de la diffusion peut Btre nCglig& Dans une caviti: bidimensionnelle carrte, les rtsultats du flux radiatif 
obtenus par l’approximation P,, avec une condition aux limites amtlioree, sont en ban accord avec les 

rksultats numkriques exacts de Kim et Lee (ht. J. Went Mass Tran.yfer 31, 171 I”.“.1721 (1988)). 
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ANWENDUNG DER P,-NAHERUNG AUF DIE UNTERSUCHUNG DES EINFLUSSES 
ANISOTROPER STREUUNG AUF DEN STRAHLUNGSWiiRMETRANSPORT 

Zusammenfassung-Zur Untersuchung des Warmetransports in absorbierenden emittierenden und 
streuenden Medien wird die P,-Nlherung sowie die 6-Eddington-Phasenfunktionsnaherung verwendet. 
Es ist bekannt, da13 der Asymmetriefaktor der Streuungsphasen-Funktion @) den Strahlungsvorgang 
stark beeinfluot. Fur die Untersuchung des Strahlungswarmetransports werden der effektive Streuungsko- 
effizient sowie die effektive optische Lange verwendet. In stark vorwarts streuenden Medien @ > 0.8) 
kann der EinfluB der Streuung auf den Strahlungswlrmetransport vernachlassigt werden. In einem 
zweidimensionalen quadratischen Hohlraum wird der Strahlungswarmestrom mittels der P ,-Approxi- 
mation berechnet. wobei eine verbesserte Randbedingung benutzt wird. Die Ergebnisse zeigen gute 
tibereinstimmung mit den numerisch exakten Berechnungen von Kim und Lee (Effect of anisotropic 
scattering on radiative heat transfer in twodimensional rectangular enclosures, Int. J. Heat Muss Transfer 

31, 1711-1721 (1988)). 

WCCJIEAOBAHHE BJIHRHkI8 AHB30TPOIIHOI-0 PACCEXHMII HA PAAHAHMOHHbIfi 
TEI-IJIOI-IEPEHOC C MCfIOJIb30BAHMEM P,-AI-II-IPOKCHMAI&IM 

Anuo~aumi--_Ann uccne~osamin p~auaomioro rennonepenoca a nornomamuuix, asn~aronuix n pac- 
ceWBaKmmX Cpenax HCnOJlb30BaJICll MeTOg P,-annpoKcriMamin B KoMBmrarma C annporcriMaurieii 
Cpa3onoii S-&HKWH 3RqEIrirroua.Ycrarionnerr0, STY samiylo ponb B pamawoHHoM nepe.Hoce mpaeT 

@atxopacmmeTpmi Qasonoii &HKIJHH paccenmin(g). llpe uccnenoBamiup~a~o~HoroTennonepe- 

~ocanpe~araeTcnHcnonb3osaHneno~nTHir~~ercTuaHoro~o~u~eHTapaccen~u~~ ~@*KTBBHOTO 

OtITWieCKOrO PiUMepa. B CJIy'Iae CHJIbHO pZ3CCWBZUOlUHX BHi?PeA -A (9 > 0.8) BJIHgHHeM pi3C03IHHK Ha 

PZiAHaAHOHHbIii TeIIAOlle&%2HOC MOWHO npeHe6peXb. Pe3yJIbTaTbl &llX PaLlHalIIlOHHOl-0 TeIIJIOBOrO 

noToKa, nonyveHHbre M~TOAOM P,-anrrporrcuhranmi c ricnonb30namieh4 ~om+imiponairuoro rpaeun- 
uoro ycnoem B cnyqae ,nayxseprroii rcsanparuoii nonocrri, xopomo cornacyrorcn c TOYH~IM~ wicnew 
~buai peaynbraraMtr Karma H JIH (Effect of anisotropic scattering on radiative heat transfer in 

two-dimensional rectangular enclosures, Int. J. Heat Mass Transfer 31, 1711-1721 (1988)). 


